Greenhouse Neutral Foundation

Site menu:

Recent Posts



Site search


March 2010
« Feb   Apr »



Aquatic ‘Dead Zones’ Contributing to Climate Change

As covered in the book ZERO Greenhouse Emissions ‘Since first recorded in 1970 ocean dead zones have been on a dramatic increase, doubling in each decade from recorded areas in the 90’s to 150 in 2003, some stretching 70,000 square kilometers. The United Nations reports over the following two years 2003–2005 estimates were of 200. In 2008 the reported figure was 417 worldwide.’

From Science Daily -The increased frequency and intensity of oxygen-deprived “dead zones” along the world’s coasts can negatively impact environmental conditions in far more than just local waters. In the March 12 edition of the journalScience, University of Maryland Center for Environmental Science oceanographer Dr. Lou Codispoti explains that the increased amount of nitrous oxide (N2O) produced in low-oxygen (hypoxic) waters can elevate concentrations in the atmosphere, further exacerbating the impacts of global warming and contributing to ozone “holes” that cause an increase in our exposure to harmful UV radiation.

“As the volume of hypoxic waters move towards the sea surface and expands along our coasts, their ability to produce the greenhouse gas nitrous oxide increases,” explains Dr. Codispoti of the UMCES Horn Point Laboratory. “With low-oxygen waters currently producing about half of the ocean’s net nitrous oxide, we could see an additional significant atmospheric increase if these ‘dead zones’ continue to expand.”

Although present in minute concentrations in Earth’s atmosphere, nitrous oxide is a highly potent greenhouse gas and is becoming a key factor in stratospheric ozone destruction. For the past 400,000 years, changes in atmospheric N2O appear to have roughly paralleled changes in carbon dioxide CO2 and have had modest impacts on climate, but this may change. Just as human activities may be causing an unprecedented rise in the terrestrial N2O sources, marine N2O production may also rise substantially as a result of nutrient pollution, warming waters and ocean acidification. Because the marine environment is a net producer of N2O, much of this production will be lost to the atmosphere, thus further intensifying its climatic impact.

Increased N2O production occurs as dissolved oxygen levels decline. Under well-oxygenated conditions, microbes produce N2O at low rates. But at oxygen concentrations decrease to hypoxic levels, these waters can increase their production of N2O.

N2O production rates are particularly high in shallow suboxic and hypoxic waters because respiration and biological turnover rates are higher near the sunlit waters where phytoplankton produce the fuel for respiration.

When suboxic waters (oxygen essentially absent) occur at depths of less than 300 feet, the combination of high respiration rates, and the peculiarities of a process called denitrification can cause N2O production rates to be 10,000 times higher than the average for the open ocean. The future of marine N2O production depends critically on what will happen to the roughly ten percent of the ocean volume that is hypoxic and suboxic.

“Nitrous oxide data from many coastal zones that contain low oxygen waters are sparse, including Chesapeake Bay,” said Dr. Codispoti. “We should intensify our observations of the relationship between low oxygen concentrations and nitrous oxide in coastal waters.”

Want a weekly update of all the greatest posts on the web? Subscribe for the weekly VOICE FOR CHANGE Newsletter and never miss a story! CLICK Bob Williamson and in the subject line type SUBSCRIBE

Use a Highlighter on this page


Pingback from » Voice for Change Newsletter Archive #8 03/10
Time March 27, 2010 at 11:08 pm

[...] Aquatic ‘Dead Zones’ Contributing to Climate Change – Covered in my book ZERO Greenhouse Emissions this issue was discussed in some detail. [...]

Write a comment

You need to login to post comments!